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ABSTRACT g
11573/
Quantum-mechanical calculations of the differential cross
section for the small-angle elastic scattering of heavy particles
are carried out to establish more definitely the region of validity
of the classical approximation. Four results are discussed:
(1) The Massey-Mohr phase-shift formula corresponds to the
Kennard small-angle scattering formula in the semiclassical
limit. (2) The Schiff approximation for the cross section is
exactly the same as the semiclassical approximation at small
angles, for any central potential. (3) At very small angles the
semiclassical 1limit for the differential cross section varies as
exp (—062), where ¢ is a function of velocity for which explicit
expressions are given. (4) The first quantum deviation from the
classical limit, which is proportional to ﬁz, can be combined with

the preceding result to give a reasonable representation of the
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differential cross section over the entire range of small angles
for which quantum deviations are appreciable., Detailed calcula;
tions for some specific systems are made, and it is shown that
Wu's misgivings over the classical interpretation of the

experimental results of Amdur and coworkers are unjustified.
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I. INTRODUCTION

It is well known that the classical treatment of heavy
particle scattering always fails at sufficiently small scattering
angles, so that measurements of molecular beam scattering cannot
be analyzed in terms of classical mechanies if the observations
include contributions from these small angles. For instance,

Wu1 has dquestioned the classical analysis of the scattering
results for the He-He system, particularly the results of Amdur

and Harkness,2 which extend down to angles of the order of 10_3

rad.
The usual criteria3 for the applicability of classical mechanics
are sufficient, rather than necessary, conditions, however, and
may well be too stringent. More quantitative criteria for the
validity of the classical approximation are therefore desirable.
Knowledge of the details of the scattering in the quantum region
would also be desirable, since this region is experimentally
easily accessible with low-energy molecular beams. In view of
the current interest in molecular beam scattering studies, both
in the thermal and high-energy ranges, it is of interest to
investigate these questions theoretically.

The purpose of this paper is to carry through the quantum
calculations of the differential cross section ¢(6) for small-
angle elastic scattering, and to use these calculations to

establish more definitely the region of validity of the classi
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approximation. Particular attention is paid to the experimental

results of Amdur and coworkers.




The usual criterion for the applicability of classical
mechanics is that the uncertainty in the momentum of a colliding
system be small compared to the momentum transferred in the
collision., (Another criterion, that the de Broglie wavelength
be small compared to the range of the scattering field, is usually
well satisfied.) The momentum uncertainty is usually taken to
be about ﬁ/(2ro), where r, is the range of the scattering field
(often taken to be the classical distance of closest approach),
and the momentum transferred in small-angle scattering is approx-
imately uv0, where pu is the reduced mass, v the relative velocity,

and 6 the relative deflection angle.4’5

The criterion thus becomes
4 /(2uvr 6)<<1. For Amdur and Harkness' He-He results, this
ratio varied from 0.18 to 0.12, not extremely small compared to
unity, but hardly large enough to be certain that the classical
approximation is invalid.6 Amdur6 has cited independent indirect
evidence indicating that the classical approximation is probably
valid for analyzing his measurements, but the important question
of a more quantitative criterion of validity remains open.

A rough quantitative criterion for classical scattering
was given long ago by Massey and Mohr7a for the case of rigid
spheres of diameter rys which was that the classical result was

valid for angles larger than a 'critical" angle GC, whose value is

approximately

6,% / (kr"o) = ﬁﬁ/(uvro) , &)



where k = uv/H is the wave number of the relative momentum., This
result can be extended to other than rigid spheres by interpreting
r, as the classical distance of closest approach for scattering
through the angle BC.Tb When this is done, and the results
compared with the few relevant experimental measurements involving
beams of thermal energies, it appears that the classical values
may hold accurately right down to Qc, and begin to deviate only

for smaller angles.s’9

There is no special reason to think the
situation different for high energy beams. In terms of the
critical angle, the previous sufficient condition for classical
scattering becomes 9>>GC/ZW, which indeed seems too stringent a
criterion. Our detailed calculations confirm these conclusions,
and also yield an explicit general formula for ¢{(6) in the small-
angle quantum region. This can be combined with an expression
for the initial deviations from the classical o(6), so that the

whole angular region from 6=0 to the classical limit is fairly

well covered.

II1, GENERAL FORMULAS

The general problem is to find solutions of the
Schroedinger wave equation for a particle of mass y and wave number

k, moving in a scattering potential field V(r),10

v23y+ k2-U)v=o0, (2)



where U==2pV/ﬁ2. The solution must have the asymptotic form

Y —> exp (ikz)-+r—1f(9)exp(ikr), (3)

where the z-axis 1is chosen along the direction of incidence of
the beam, The quantity f(6) is the scattered amplitude, which
determines the differential cross section according to the

formula

o (e) = [e(e)] 2, (4)

which is valid when the beam and scattering particles are
distinguishable. If the colliding particles are indistinguishable,
the wave function must satisfy certain symmetry conditions, and

Eq.(4) must be modified because the scattered beam particles

cannot be distinguished from the recoil scattering parti'cles.7’11

However, all the experiments to which we shall refer are concerned

with particles which are in practice distinguishable, and so

these points do not concern us.12

There are two usual methods of solving this problem:

the method of partial waves,7’10’11

method4’13 which leads to the infinite Born series.

and an integral equation

A. Phase-Shift Series

The method of partial waves gives the scattered amplitude

in terms of the phase shifts 62 for the partial waves of the

asymptotic solution,7’10,11




£(6) =(21k)_1;zéo(22+ 1) [exp(2iéz)—1;l Pg(cos e), (5)

where £ is the angular momentum quantum number and the g;(cos 8)
are Legendre polynomials. A quantity often determined experimentally

is the "total" scattering cross section,
il
s(e) - 27Tf 5(8)siné do, (6)
8
o
where 90 is the angular aperture (resolving power) of the apparatus.
For GSfO, Eq.(6) can be integrated to give the true total cross

. 7,10,11
section,

S(O)==@4ﬂ/k2)£262£+:l)sinzéﬂ. (7)

At 9=0 we haverw(1)=1,and comparison of Eqs. (5) and (7) gives a

general relation between S(0) and the imaginary part of f(O),11

$(0) = (4m/k) Im[£(0) ]. (8)

An approximate formula for S(0) in terms of f(0) can be obtained

by substituting Eq. (5) back into Eq. (4) and writing

1

2
0(9)==(4k2)_ %(Zﬂ-+l)(2:sin2§g)ge(cos 9)’

2
+(4k2)'1'%“;(2£+1)(sin 26, ), (cos e)’ . (@)

Under some circumstances it is permissable to neglect the second

summation on the right compared to the first summation, in which



case we obtain the simple approximation7

$(0) % (4n/K) [0(0)]% = (/0|1 |. (10)

The phase shifts % are to be calculated by integration
(usually numerical) of the radial wave equation. Since such
integration is very laborious except for a few simple forms
of V(r), approximations are usually introduced in the calculation

of the 6£.

B. Infinite Born Series

A formal solution of the wave equation (2) with the
correct asymptotic form can be obtained in the form of an

integral equation4

v —p exp(ikz)+~(4ﬂr)_1exp(ikr) exp[—ik(a;gjj]U(r')w(gf)dT',
(11)

where n is a unit vector in the direction of x, and dr'=dx'dy'dz’.
Equation (11) can be solved . by iferation, so that f£(6) is

obtained as the infinite Born series
f (6) =n=2_1./' : -fexp[—ik(g-gn)JG(gn—gn_l) et G(gymry) X

X U(rn)--- U(rl)eXp(iKzl)dTl--- dTn, {(12)

where

6 (p) =~ (4mp) "texp (ikp) . (13)



The first term of the series yields the usual first Borh
approximation; higher terms are very laborious to calculate

unless approximations are made.13

I1I, APPROXIMATION METHODS

A. Semiclassical Approximation

In the summation over phase shifts of Egs. (5), (7), and
(9), a large number of terms are required in all cases except the
scattering of very light particles at very low energies
(corresponding to temperatures far below room temperature).
Furthermore, it is the phase shifts for large / which are the
most important. It is therefore a good approximation to replace
the summations over ¢ by integrations over df, provided of course
that one can also approximate both Pﬂ and 65 as continuous functions
of £. These three approximations can all be made, and together
constitute what is called the semiclassical treatment of scattering.
A particularly thorough and lucid discussion of the semiclassical
method has been given by Ford and Wheeler.14
The Pﬁ are represented by two asymptotic formulas valid

14,15
for large £, one valid for small angles (siné&<1/4%), ’

P, (cos 6) % (cos )% 5 [+ D 6], (14)

where Jo is the Bessel function of order zero, and the other

4,16
valid for large angles (sin6> 1/4),



3
. 2 1 :
Pz(COS 6)~<7T,g sin O ) [é_ _47__ + . ..) sin (Z)

- %7 cot 6 cos¢-&---} , @as)
where
¢ =(b+3)o+37. (16)

The éz are represented by the JWKB approximation, with

the Langer modification of replacing £.(4+1) by (E+%)2. Letting

b= (£+3)/k, we can write this approximation astr 14
_ . ) . S
_ 2 2 | 2]2 )
6,=6 )=k [ N-(b/r)"- (U/k") dr- k | [1-(b/r) dr, Q7)
r, b

where the lower limit of each integral is the zero of its integrand.

The 1limit r, is the analogue of the classical turning point of the
motion (the distance of closest approach in scattering), and the
limit b is the analogue of the classical impact parameter. Direct

differentiation of Eq. (17) leads to the semiclassical relation

between the phase shifts and the classical deflection angle,4’11

6 (b) =(2/k)(dé/db)==2(déz/dﬁ). (18)

For large £ a further simplification of Eq. (17) is

possible, because r, is then also large and approximately equal

+~n Mha sradivea ~Af TI/n)Y S0 +hoavafarma cmian T dlartryorb vy
VU U, 1UT vaiut U1 uUll) 1d uieilielilic Jiidira viniGugnouv

of integration, and the first integrand can then be expanded into

a binomial series and tthe two integrals combined. The result is




g -3
5(b)x-(k/2{/fu/k2)[1-(b/r)2} dr. (19)
b

This approximation was first proposed by Massey and Mohr7b

(see also Landau and Lifshitz11

). The classical analogue of the
Massey-Mohr approximation for the phase shifts is the Kennard17
approximation for the deflection angle in small-angle classical

scattering, which for rdzb can be written as

- -3/2
6 =(b/E{/\[Q(b)—V(r{][i—(b/r)z] dr, (20)
b

where E= pv2/2. It is easily verified that Eqs.(19) and (20)

are related by differentiation according to Eq. (18).
Combining these results, we can write the semiclassical

approximation for the total scattering cross section as

S(0) = ST/{%inzé(b{}bdb, (21)

O

and the scattered amplitude as

00

£(0) = —ikfexp[2ié(b)}P(b,@)bdb, (22)

o
where the term Z(2£4-1)Pl from Eg. (5) has been set equal to
zero.11 This is valid except for 6 =0. The differential cross

section can be written as

o .
o(8) = 4k2 [[Sinzé (b)] P(b, 8) bdb +
°
5y 2
+ kZ\/W%in Zé(b{lp(b,e)bdb , (23)

0 B
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which is valid even at 6=0, In Egs.(22) and (23), P(b,6) is
given by one of the following two expressions, depending on

whether 6 is smaller or larger than (kb)—l:

P(b, 6)~J_(kbo) for 6< (kb)'l, (24)

{sin<b—
1

-(8kb)—1(cot6 cos O+ 2 sino )+ ---]for 9>(kb)_ ,
(25)

o=

P(b,8) =~ (37kb sin 6)

where ¢ = (kb6 + 3m) as in Eq.(16). 1In Eq.(24) we have limited
ourselves only slightly by discarding the (cos ©) factor which
appeared in Eq. (14). The expression for &6(b) is given by Eq. (17)
for all 9, and by Eq.(19) for small 6., It should be mentioned
that © can be small compared to unity but nevertheless

considerably larger than (xb) L.

B, Method of Stationary Phase and the Classical Limit

The method of stationary phase has been reviewed by
Eckart18 and by Erdélyi,19 and we merely quote the results
here since we need to make use of the method. Consider the

integral
o0

I =[\g(t)exp[i®(t{]dt. (26)

If there is a pointT where ® is stationary with respect to t,
i.e. where ®'(t) =0, then most of the contribution to the

integral comes from the vicinity of this stationary point, since
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elsewhere the exponential factor oscillates rapidly as ¢ varies
with t and the oscillations effectively integrate to zero. The
integral can then be evaluated by expanding ® as a Taylor series

about 7 and integrating to obtain
1
I =[2ﬁ/®”(Tf g(T)exp[i®(7)+(iﬂ/48+--- . 27

When the exponential in Eq.(26) has a real instead of an
imaginary argument, this approximation procedure is called

Laplace's method.zO The remainder in the approximation can be

estimated by integration by parts.ls’19
The classical limit of o (®) is obtained by applying the
method of stationary phase to the semiclassical integral for £(6)

given in Eq. {(22), with just the first term from Eq. (25) used for

P(b,0):

o
f(9)==—k%(2W sin6 )_%/Tkxp (i@k)— exp(i@_i]b% db, (28)
o
where ®+==26(b)j:¢. Depending on the sign of &, one of the
exponents has a stationary point and the other one does not,
so that most of the contribution to the integral comes from the
stationary point of only one of the exponents. To this

approximation we can then write

242s/ab2| "2 exp| (10, + (in/9)] . (29)

1
= in6 ) 2

(0 T (kb/sin6)
Taking the absolute value and making use of Eq.(18), we obtain

o, (® =[fc£ (0) |2= (b/sin e)lde/dbl—l, (30)
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which is exactly the classical result. Our reason for outlining
this well-known derivation here is to call attention to the

things that have been dropped in obtaining the classical result,

and which must presumably be included to obtain at least a first
quantum correction. These are: higher terms in the asymptotic
expansion of P(b,6) in Eq.(25), and remainders in the stationary
phase approximation (including that one of the & exponents which

did not have a stationary point). The use of the JWKB approximation

for the phases is expected to be quite accurate.7’21

The
replacement of the summation over /£ by an integration should also
be accurate, and can be checked by taking higher terms in

the Euler-Maclaurin summation formula.22

C. Schiff Approximation

The Schiff approximation is obtained by summing the
infinite Born series after approximating each term by the method
of stationary phase.13 For axially symmetric scattering potentials
Schiff's approximation for the total cross section can be written
as

o0

S(0) = 4r| [1-cos 2¢ (b)] bdb, (31)

is
J
[o}
where

£ (b) = (410)71 f U(b, 2) dz, (32)

=00

and for the scattered amplitude at small scattering angles as

(o]
£(0) = ikf [1-exp (-2i£)] 3_ (ab) bdb, (33)
o
where q = 2ksin(6/2)~ k6 for small angles. At small deflection

angles z2=p2p2 and dz=[1—(b/r)2]-% dr, so that Eq. (32) becomes
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o0

_ Y -3
£(b) = (2k) 1‘[ U(b, 2) dz = (1/2)f<u/k)[1- (b/T) 2] dr.  (34)
o]

On comparing this with the small-angle approximation for the

phase shifts given in Eq. (19) (the Massey-Mohr approximation),

we see that £(b) is just the negative of §(b). Thus Eq. (31)

for the total cross section corresponds to the semiclassical
expression given in Eq. (21) (since cos 2'C=1—2sin2 ¢-), and Eq. (33)
for the scattered amplitude corresponds (except at6=<0) to the
semiclassical Eq. (22) with P replaced by J, according to Eq. (24).
At small angles, therefore, the Schiff approximation corresponds
exactly to the semiclassical approximation. It is gratifying that
these two different approximation procedures yield the same results.
Their equivalence seems to have escaped notice for some time,
however, and only recently has it been noticed23 that the two
procedures give the same result for the total cross section for
inverse power potentials. We see from the foregoing that the

equivalence is more general, and holds for both the differential

and total cross sections for any central potential.

IVv. CALCULATIONS

A. General Remarks

To get an accurate expression for ¢g(0) we must first assume
an algebraic form for V(r), find 6(b) from Eq. (19) by integration,

and then evaluate o(8) from Eq. (22) or Eq.(23) by another
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integration., We shall carry through such calculations in detail
in this section for some simple forms of V(r), particularly
inverse power repulsions or attractions for which most of the
integrations can be carried out in closed form, but first we
wish to show that very general approximate results can be
obtained without any assumptions about V{(r) other than that it
is monatonic. These results give o(6) as an explicit function
of 6 and S{0), and to a rough approximation are independent of
the form of V(r). We consider two cases - very small angles
where the deviations from classical behavior are large, and
larger angles where the results are almost classical.

For very small angles we start with Eq. (23) for o¢(0).
Since &(b) is large and varies rapidly with b, the value of sinzé
oscillates rapidly between 0 and 1 out to some large value of
b, and then rapidly decays to 0 at still larger bh. Similarly,
the value of sin 206 oscillates between -1 and +1 out to a
large value of b, and then decays to 0. A rough approximation
can therefore be obtained by replacing sin26 and sin26 by their
average values of 1/2 and 0, respectively, out to b=b0, and
setting them equal to zero for b>bo. This is a crude random-
phase approximation. Substituting these approximations into

Eq. (23) together with the series expression for Jo

o
S
()}

b)
cn
-’

<\ —
\ay

°© 2 2% 24%6

T
(3]

we can integrate term by term. The first few terms of the

resulting series are nearly the same as those for the series
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expansion of an exponential function, so that an exponential

can be substituted for the series expansion with little error

at very small angles. This substitution is not basic, but

merely serves to consolidate the form of the final result. The
vaguely specified parameter b0 is then eliminated in favor of

S(0) by noting from Eq.(21) that S(O)=27Tbo2 in this approximation,

and the final result can be written as

0 (0)% 5(0) exp[-5 (0) k%67 (8m) |, (36)

with 0{0) given approximately in terms of S(0) by Eq. (10).

This derivation takes inadequate account of the behavior
of sinzé and sin2d, especially for "soft" potentials, but the
only effect of a more careful calculation is to iniroduce one
constant into the exponent of Eq. (36) axnd another constant into
Eq. (10) . These constants are of order unity and depend on the
form assumed for V(r), but the dependence of c{&) on 6 is not
affected by this refinement. The expressiocn {(36) for o(6) is not
entirely new; a variation of o(6) approximately as exp(—@z) has
been pointed out previously in connection with scattering by
the long-range r—6 London potential (van der Waals potential).ga’24

For larger angles we can obtain from the foregoing analysis
a rough lower limit for the critical angle, QC, above which
the classical results are valid. We have used the small-angle
approximation PzJo out v an impact parameter of bo, and cbtained
quantum results valid for G<(kb0)—1 according to Eq.(24). For

somewhat larger angles, we may expect that Eq.(25) for P is valid,
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and the first term of Eq. (25) yields the classical result. Hence

6, must surely be greater than (kbo)_l, or
-1 %
o >k 2m/S (0) . (37)

This lower limit is smaller than the Massey-Mohr value of QC
given in Eq. (1) by a factor of m (since r6xbo for small
deflection angles).

For larger angles we can also investigate the effect of
keeping higher terms in the approximation for P given by Eq. (25),
and thereby get some indication of the initial deviations from
the classical result. Substituting Eq. (25} into Eq. (22) we

obtain

f(6)=—k%(27r sin 9)“%f[1-(4kb)'1-:~--.+i(8kb)“1cot9+--.] x
0

1
x exp(i® )b?db

+kE (27 sing )%f[l—(4kb)_1+--- - 1(8kb) lcot & + . ]x
0
X exp(i@_)b%db, (38)

which gives, by the stationary phase approximation,
Vs . l 2 2 _% . .
F{O)=+F \kb/SlnE9)2|2d 65/db | exp [kl@i)+(lﬂ/4ﬂ X

1

X [1—(4kb)' oot i(Skb)"1

cot® +~--]_ (39)
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From this we obtain, on writing cot =61 4...,

o(eizocz(e) [1—(2kb)-1+ SRS (Skbe)'2+ ] (40)

To obtain an estimate of magnitudes, let us rewrite this in

terms of the Massey-Mohr expression for the critical angle,

ch’n’/ (kb) :

G(GC)z%%z(QC)[l-(GC/ZW)+----+ (1/8ﬂ)2-+'--]. (41)

Since QC is usually less than 0,1 rad, the first correction
term will usually amount to less than 2%. The second correction
term contributes less than 0.2% at this angle. We therefore
conclude that the major deviations from the classical expression
at angles less than Qc are not due sclely to the approximation
for P given in Eq. (25). This leaves the stationary phase
approximation to be blamed.

To obtain more accurate results for ¢(6) we must now

assume an analytic form for the potential.

B. Small-Angle Quantum Formulas

We first assume a potential of the form
Vvir) = +K/1° , (42)

where K and s are positive constanis. Inserting this into

Eq. (19) and integrating, we obtain the Massey-Mohr approximation

for the phase shifts7b’11

_ -1 '
&6 (b) =F uKC [(s—l)ﬁzkbs_ 1] =- %kb [U (b) /x> ][CS/ (s—l)] ) (43)
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where

c = Cds+ H/Gs). (44)

Let us first evaluate S(0) by substituting (43) back
into the semiclassical Eq. {21) and integrating. If the

integration variable is changed from b to & and an integration

by parts performed, the remaining integral is a known J‘form,z5
and the final result is
2/ (s-1
S(O)==F(s)[K/(hv)] ¢ 2 (45)
where 2/ (s-1) -1
F(s) =72 —2—(-:—8— I—l _2_\gin (- >2 (46)
S s—1 . s-1 s-1j| * 57¢-

A simpler approximate integration has been given by Massey and
Mohr,7b who replaced sin25 by its average value of 1/2 out
to b=b%*, where b* is that value of b for which & (b*)=1/2,

2 for b>b*. This random~-phase approxima=

and replaced sinzé by &
tion is an improvement over our previous rough approximation of

setting sinzé equal to zero for b>b,, and yields the result
2/ (s-1)
2s-3 2Cs

F(s)axm -3 \s=1 , S>2, 47)
which is equal to the more accurate result of Eq. (46) for
s =wo (rigid spheres), and is 5 to 7% smaller for s between 10
and 3 (7% smaller at s==6).23

It is also easy to evaluate o0(0) by substituting (43)

into the semiclassical Eq. (23) and putting P(b,0)=1. The first
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term can be written in terms of S(0) and gives the previous
approximate Eq.(10)., The second term, involving sin 28, was set
equal to zero by Massey and Mohr7a in their treatment of rigid
spheres. This 1s correct for rigid spheres but produces appreciable
error for "soft" potentials with finite values of s. The integral

in the second term is a known form, and the result is
2

_ |kS(0) 2

o(0) = Ejﬁ;{} &g+tan

so that the second term becomes equal to the first term for s=5

—S%—H , S>3, (48)

and dominates the first term for s<5., Using the simpler Massey-
Mohr approximation of taking sin25 equal to zero out to b*, and
equal to 25 for b>b*, we obtain an expression similar to Eq. (48),
but with the Massey-Mohr random-phase approximation for S(0) as

given by Eq.{47), and with the tangent term replaced as follows:

tan [ﬂ/(s—l)] -———>|:4/(s-3):| [(5—2)/(28-3)] . (49)

For this expression the second term dominates the first term for
s>4.,69.

To evaluate o(8) we substitute {(43) into (23), replace
P by Jo according to (24), write Jo as the series given in Eq. (35),

and integrate term by term to obtain

2 2
ale) = [%T-f—qi, I-l—fl(s)(%q-(giz\P y —’
L Jd L \ / d

2 2 2 2
+[%TCQ tan(sfl)] [1'fz(s)<£§—é($r)9—)+---] : (50)
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where
2 -1
£,(s) = 2 [(ﬂk——T) sin flﬂ {”rxégi) sin (27 ] , >3,  (51)
| -1
f,(s) =1, (s) ljtan (3%-} l:tan (élT:T\):‘ s>5. (52)

Equation (50) can be approximately summed for small values of 6,

and put into the more compact exponential form,

2
0(9)==[k2§05} %»+tan2(§§—i]exp [ﬁ f(s)kzs(o)ez/(swﬂ , (53)

where

o] o] o

The value of f£(s) is unity for s=cw(rigid spheres) and not too

\
217 -~
3] s, (54)

far from unity for values of s as low as 6. Equation (53) sums
the series in (50) exactly to the number of terms written; higher
terms are of the correct form, but their numerical coefficients
begin to deviate from the correct values. Equation (53) thus
becomes inaccurate when the value of the exponent becomes larger
than about 1/2. If we put this criterion in terms of the critical
angle given in Eq.{1), taking r0==[S(0)/2ﬂ ]%, we find Eq. (53)

to be accurate tor angles

o< [FPrre] e, (55)

~

This corresponds to 9<0.458C for s=® and 9<0.319c for s=6.
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If the integrations leading to Eq. (53) are carried out
by the Massey-Mohr random-phase approximation, results of the
same form are obtained, but with the tangent term in front of the
exponential replaced as in (49), and with f(s) in the exponent

given by
2 2 2 4 4 4 2 27
~ S5 S— i S
f(s)”4(§:‘§)(2s-3) [“(?—‘5’)(%—3”[“(E—'—'?‘f(zs—s) ] - (58

The Massey-Mohr approximation agrees exactly with the more

accurate calculation for s=w; for s=11 the coefficient in
front of the exponential is smaller by a factor of 0,955 and
f(s) is smaller by a factor of 0.992; for s= 6 the coefficient
is smaller by a factor of G.884 and f{(s) is larger by a factor
of 1.046. This agreement seems satisfactory for most purposes.
Similar results can be obtained for an exponential

potential,

Vir) =% A exp (-ar), (57)

where A and a are positive constants. The Massey-Mohr
approximation for the phase shifts can be integrated exactly in

terms of the modified Bessel function of the second kind,26 but

for most purposes the following asymptotic series26’27 is

satisfactory:

_ o -t -3
5(by= ¥ [uA/ (a“K)| |10/ (20) |~ exp(-ab)

X [1 +(3/8) (ab) 1= (15/128) (ab) "%+ - ] . (58)
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In this case the integrals for S(0) and o(6) are best done by the
Massey-Mohr random-phase approximation. The resulting expression

for S(0) as a function of v is parametric in b™*:

5(0) = 27b*2[1+ } (ap® L4 .. ] (59)
b*exp(—2ab*)==(a/ZW)Cﬁv/A)2, (60)

The expression for 0(6) also involves the parameter b*, but
this can be eliminated in favor of S(0) by iterative solution of
(59), so that the result can be expressed in the same form as for

the inverse power potential,

2 «
0(6) =[k8(0) /4]~ G (a)exp [-g @) k5 (0)6%/ (8M)] , (61)
where
G(&)=]:F8W[@2S“»]—l e, (62)
g(a) =1+ (ZW)%[QZS(O)]—% I (63)

Both G{(z) and g(a) depend also on velocity implicitly through

the velocity dependence of S(0). Equations (59)~(61) are easily
handled numerically by picking a series of arbitrary values of b*,
and for each one calculating the values of S(0) and of o¢(8) from

Egs. (59) and {(61), and then the corresponding value of v from Eq. (60).
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C. Initial Quantum Deviations from the Classical Limit

We have indicated in Sec.IVA that the initial deviations
from the classical limit are due to the use of the stationary
phase approximation. Since it is difficult to calculate correction

18,19 we do not

terms to the stationary phase approximation,
expect to obtain much more from this approach than an indication
of the angle and energy at which the quantum deviations begin

to be important, and hence a more precise estimate of Q} than
the Massey-Mohr value of Eq. (1), Before presenting the results
of this calculation, it is worthwhile to record the explicit
results for the classical approximation. For the inverse power

potential of Eq.{42), Kennard's small-angle formula (20) can be

integrated to give17

6 = KC_/{Eb"), (64)
where CS is given by (44). This result can of course also be
obtained by applying the relation 6 = (2/k) (d&6/db) to Eq. (43)

for the phase shifts. From the general classical result that

2
S(90)==ﬂ[b(90)] we obtain
. /(56 2/s .
5(6.) = [KC/ (%0 ) | , (65)
and from the general classical relation of Eq.(30) we obtain

5(8) = (1/5) (ke /B)2/S(1/0) 2+ (2/9) = 12/ (s6%) = 5(6)/ (ms6?) .
(66)
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If we take r_ in Eq. (1) for 6, to be the distance of
closest approach (or the impact parameter) for a classical
scattering angle of GC, then substitution of (64) into (1) yields

the explicit expression for Gc,

ecz[ﬁzﬁ2/<2u§]S/(2S_2)(KCS)_I/(S_l)E_(8‘2)/(28“2).

(67)
1

If we take ro=[$(0)/2w]2 as suggested by Massey and Mohr, and

use the expression (45) for S(0), we obtain an expression exactly

like (67), but multiplied by the factor

1/{s~1) 3
[27rrl(-s_2—1) sin (;—7}1—” (68)

This factor is unity for s=®, as might be expected, and is
close to unity for finite s. For s=11 it is 1.067, and for
s=6 it is 1.000. Even for s= 3 it falls only to 2/71=0.637,
Similar results hold for the exponential potential of
Eq. {(57). 'The Kennard small-angle formula {20} can be integrated

exactly in terms of a modified Bessel function of the second kind,28

8,29

but the following asymptotic series2 is usually more

convenient (first obtained by Amdur and Pearlmango):

6 =x{A/E) (mab/2) 315exp (-ab) [1- (1/8) (ab)'1+(9’/128) (ocb)'2+ o -J; (69)

which can of course also be obtained by differentiation of Eq. (5R)
for the phase shifts. 1In principle, S==Trb2 could be found as an
explicit function of 6 by solving Eq.(69) for b, but it is much

easier to leave S as an implicit function of © and calculate it
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numerically by treating b as an arbitrary parameter, just as
b* was treated in connection with Egs. (59)-(61). Similarly,
it is easier to leave ¢(8) as an implicit function of 6. From

Egs. (30) and (69) the expression for c(0) is

a(8) = [8(6) /6%] (mab) ™! [1+(12)(ab) T+ (3/8) (ab) "2+ -], @0

We do not bother to write down the expression for QC for an
exponential potential, since it is a transcendental equation
whose form depends slightly on whether we take r, as the classical
distance of closest approach or use the Massey-Mohr value of

[S (0) /27T]% .

Although we have seen that the Massey-Mohr phase shifts
vield the same final result in the classical limit as the Kennard
small-angle formula, there is sometimes a real advantage to the
direct use of the Kennard formula when it is applicable, The
reason is that it is easy to improve the Kennard formula so that
its range of accuracy extends to larger angles. All that is
necessary is to use the distance of closest approach in place
of b in Eqgqs. (20), (64), and (69) for 6, and then in the calculation

of S(6,) and ¢(6) to use the classical relation,

p2 = r02 [1- v(r )/E], (71)

where r, is the distance of closest approach. The improvement

in accuracy obtained in this way can be quite important in the

analysis of experimental results.zg’31



26

We now consider the corrections to the classical results.
The general method of calculation by the stationary phase

approximation has been given by Erdélyi,19 and the application to

molecular scattering problems is presented in detail elsewhere.32
We therefore do not give details but only point out the special
features for our particular case. In general, the major
contribution (i.e., the classical 1limit) comes from the
stationary point, and the quantum corrections may come from both
the stationary point and the end points. Although the calculation
can be carried through in complete gensrality for any arbitrary
potential, for simplicity we restricl the discussion to potentials
for which the phase shift 5@ is a monatonic fuuction of £.
Otherwise it is possible 1o have three {or more) stationary phase
points corresponding to the three {(or more) differ«<nt classical
impact parameters which produce the same absolute value of the

scattering angle.s’l4

Although such behavior gives rise to a
number of interesting physical phenomena,14 we are here concerned
only with the scattering at small angles, which corresponds to
the outermost stationary point if three or more such points exist.
For concreteness, we also assume that the phase shifts are
negative, corresponding to a repulsive potential. The results are
basically the same for small-angle scattering by an attractive
potential, but the stationary point then occurs in the other
integral.

The results can be summarized as follows.32 There is no

contribution to f(9) from the end points at infinity. There is
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a small contribution from the end points at the origin, including
an oscillating term, but these are of negligible magnitude in all
cases considered here. The only contribution of importance thus

comes from the stationary point, which gives a series for f(0) in

ascending powers of ﬁl/z. The coefficients of the terms in ﬁl/z,

-ﬁ3/2, etc., are identically zero, however, because the contributions
to them from the two sides of the stationary point are equal and
opposite. The remaining terms in integral powers of h are
alternately real and imaginary, and so when the expression for £(6)
is squared to obtain o(9), the final series consists only of

powers of‘hz. This result might well have been anticipated,

because the quantum corrections to the transport cross sections
occur33 as a series in‘ﬁz, and these cross sections are only weighted

integrals of o{(0) over all 6. The final result can be written in

the form

5(8) /5 ,(0) = 1 + (2kb20") "2 [b%/6) (8V/8") - (7p*/6) (67V/87) (9776
_(2p2/3) (6™ /6124 (25b%/6) (876" (67/6") 2~ (5bp%/2) (670 1)
+(3/2) (61V/61)- (8b3/3) (6™/6") (6"/6" )+ (5b°/2) (8"/6")°>

~(b2/2) (8"/8" )+ (3b2/2) (6"/6") 24 (3b/2) (6"/8") + 1]+ 0 x4,
(72)

6' = d6/db, 6" = d29/db2, o =d39/db3, etc., (73)
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and where GCE(Q) is given by Eq. (30). This result is not
restricted to small angles if the potential is purely repulsive,
For potentials with an attractive component, however, it is valid
generally only for small angles,

For the inverse power potential, Eq.(72) becomes

particularly simple in the small-angle limit:

0(6)/0_,(8) = 1+ (2kb®) ™% 4 ..., (74)

the next term being of order (kb@)_4, and so on. It is remarkable
that the parameter s of the potential has disappeared from the
result. This correction term is of the same form as the correction
for the higher terms of the asymptotic series for P(b,0), as

given in Eq. (40), although the correction term of Eq. (74) is
numerically 16 times larger. An estimate of the magnitude of the
correction term at the critical angle can be obtained by setting

QC:‘:» 7/ (kb) :

ce )= o, 6 [1+ 2m™2s 0], (75)

This correction is only about 2.5%, indicating that the classical
results are accurate to angles less than GC, as is confirmed by
the detailed numerical calculations in the next section.
Integration of Eq.(74) yields the expression for the '"total" cross
sectioi,

S(6)/S,,(6) = 1+ (1/s)(2kboeo)‘2+-~--, (76)

where bosa b(@o). The correction term is quite small, even for

9.<6,.
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Similar, but more complicated, expressions hold for the

exponential potential,

D. Comparison with Experiment

As examples we consider the results for two high-energy
systems, He-He and H-He, and one thermal energy system, K-Hg. We
consider first the least favorable He-He case, which is Amdur
and Harkness' measurement for a 500 ev He beam (E =250 ev). The
effective relative aperture of the apparatus wasz 4,03 X 10—3rad,
and we calculate from Eq. (67) that the critical angle is
4.15 X% 10m3rad, using the parameter52 s =5.94 and

Oes
12,1g-8%. A plot of 0(8) vs. ¢ is shown in Fig. 1

K=7.55 % 10~
for this case. The small-angle quantum formula of Eq. (53) is
drawn as a solid curve in its range of validity as given by Eq. (55),
and then extended somewhat as a dashed curve. The almost

classical formula of Eq.{(74) is drawn down to about half the
critical angle 90 as a solid curve, and then extrapolated to
somewhat smaller angles. The two formulas do not overlap, but

they come sufficiently close that the rest of the curve could be
interpolated with reasonable confidence. The figure shows that

we can use Eq.{76) to obtain an estimate of the magnitude of the
quantum deviations in Amdur and Harkness' results, and we find

them to be less than 1%. For other energies and other

30,34

apparatuses the quantum deviations are still smaller. It

is thus clear that the misgivings of Wul are unjustified for He-He,
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As a matter of fact, the disagreements between the quantum-
mechanical calculations of V(r) and the V(r) calculated from the
scattering measurements occur not for the measurements of Amdur
and Harkness, but for measurements on apparatuses for which the
quantum effects should be essentially negligible because of the
larger values of Go’ The Amdur-Harkness potential is really
in fairly good agreement with quantum-mechanical calculations.35
As a check on our formulas, we can also calculate o(6)
for He-He using an exponential potential with parametersz
==4.552ml and A=6.18 X 10;1Qerg. This potential was chosen
by Amdur and Harkness to repréduce the inverse power scattering
potential at small separations, and at large separations to join
the He-He semiempirical potentials obtained from gas properties,
The results are shown in Fig. 2, in which the exponential
potential has bheen used to calculate the smali-angle quantum
result and the classical result, but not the almost classical
result. Comparison with Fig.l shows that the results for the
two potentials are qualitatively similar, and are also in good
quantitative agreement for 8>60, which is the region investigated
experimentally. Thus for the inverse power potential we calculate
Scz(90)= 7.5822, and for the exponential potential we calculate

. " 02
Scz(eo)w 7.74A

, which differs by only 2.1%. The region for
9<90 of course represents an extrapolation of the experiments,
and here the two results differ by almost a factor of 2 as 6—0. %

Only a very small part of this disagreement can be attributed

to our mathematical approximations; most of it is due to the fact
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that the two potentials do not agree at the large separations
corresponding to these small angles., The inverse power potential
does not decrease rapidly enough with increasing r, and its
extrapolation to large r predicts a much greater magnitude for V
than does the similar extrépolation for the exponential potential,
Consequently the small-angle scattering around 6 =0 is
consistently greater for the inverse power. However, the
agreement of the two ¢{f) curves in the regions of 6 corresponding
to the regions of r where the two potentials agree shows that our
mathematical resuits for the two forms of potential are in accord.
An even less favorable case tharn He-rdfe has been mentioned
by Amdur,6 namely the H-He system.36 At the lowest energy
(E=350 ev) we calculate from Eq. (67) that Gc= 6.88 X lO_Srad,
but the effective aperture in this case was oniy 90==2.01 X 10_3rad.
For this case the small-angle quantum results cannot be calculated
from the inverse power potential obtained by Amdur and Mason,

(o)
lzerg—As)

because the value of s is so low {s=3.29, K=3.75 X 10
that some of our formulas diverge. We have to use the
exponential potential for the quantum results, although we can
still use the inverse power potential for the classical and almost
classical results, We have obtained an exponential potential

with parameters a= 1.,972“1 and A= 12.5 ev by fitting both the
inverse power scattering potential and the crossing point of the
H-He and H - He potential curves, as determined from electron
detachment data.37 The resulting c(6) curves are shown in Fig.3.

Since 90 falls definitely in the small-angle quantum regime in this
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case, we cannot use Eq, (76) to estimate the magnitude of the
quantum deviations for S(Go), but must resort to graphical or
numerical integration. Using a planimeter, we find
S(Qo)/scﬂ(eo)::0°90° Since the internal consistency of the
measured cross sections is no better than about 16%, as evidenced
by agreement between results obtained with different detectors,36
the quantum effrfects are thus only of marginal importance for this
system, It might be noted, however, that allowance for the

quantum corrections would improve the agreemocit between the
experimental results for the two detectors,

As a final example we consider the small~angle scattering
of a thermal beam of K atoms by Hg atoms. This scattering is
caused by the long-range atiractive London potential, which varies
as r . A number of cases of small-angle scattering by the London
forces have been experimentally investigated by the group at Bonn,9
and we have chosen K-Hg merely as a typical example. In earlier

(6}
measurements, Pauly38 found S(0)==2190A2 and calculated that

10 g

K= 96 x 10 " erg-A using the Massey-Mohr formula given by Eq. (47).

This therefore corresponds to a relative velocity of

Hiv= 6.69 X 10_23erg—cm, or to a relative kinetic energy of 0.068 ev.

10 Og

At this velocity, the more accurate Eq.(46) gives K=81 x 10 = erg-A,

which is the value we have used. The critical angle is then

calculated to be 5.1 X 1073

rad in relative coordinates. The
calculated curves for o{(6) are shown in Fig.4, and are seen to be
qualitatively similar to the curves of Figs.1-3. The experimental

results for this and similar systems do indeed show this behavior,9
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although they are not shown in the original papers as approaching
the classical curve from above at large angles. However, the
experimental results give only relative values of ¢g{8), and so

a simple vertical scale change would yield curves like Fig.4.

V., DISCUSSION

We have discussed four rather general results. The first
two are comparatively minor: (1) the Massey-Mohr formula for the
phase shifts corresponds in the semiclassical limit to the Kennard
small-angle formula for the classical deflection angle; (2) at
small angles the Schiff approximation is exacily the same as the
semiclassical approximation.

The third result is more important: in the semiclassical
approximation the differential cross section varies as exp(—c@z)
for small 9. A rough expression for ¢ in terms of S{9) is given
by Eq. {36), and accurate expressions for inverse power potentials
and exponential potentials are given by Egs. (53)-{(54) and Eqs. (61)-
(63), respectively.

The fourth result, derived in detail elsewhere,32 is an
expression for the first term of an asymptotic series for the
initial deviations from the classical limit of ¢(6). This is
given by Eq.(72) without any very special restrictions on the form
of the potential, and is proportional to hz. Comhined with the
small-angle quantum formula of the preceding paragraph, this

indicates that the accurate ¢(8) curve crosses the classical one
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and approaches it from above as 6 increases, provided that any
oscillating component is disregarded. Although the two formulas
do not overlap without extrapolation, they are sufficiently close
that the intermediate region can probably bhe covered by extra-
polation for many cases of interest. In principle, the formulas
could be extended somewhat in range, but the necessary
calculations appear to be very laborious.

The present results indicate that the Massey-Mohr
criterion for the «ritical angle @C is a reasonable one, but
are more quantitative. In many cases the c«lassical
approximation may be reasonably accurate to angles considerably
less than Qcc Detailed calculations for He-He and H-He show
that Wu's misgivings about Amdur's measuremcints are unjustified.
To show that the detailed results are similar for low-energy
(thermal) beams and long-range intermolecular forces, calculations
for K-Hg have also been presented. It should be emphasized
that these are valid only for small-angle scattering where the
r—6 London potential is dominant; at large angles the repulsive
parts of the potential are important and lead to several points
of stationary phase, giving rise to such effects as orbiting,
rainbows, and glories.14 The rainbow effect has indeed been

observed for K-Hg at large angles.39
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FIGURE CAPTIONS

Differential cross section for He-He at E =250 ev,
as calculated from an inverse power repulsive
potential. Curve A is the small-angle quantum
result according to Eq. (53), curve B is the
classical result according to Eq, (66), and curve

C the almost classical result according to Eq. (74).

Same as Fig., 1, but calculated in part with an
exponential repulsive potential, Curve A -
quantum, Eq. (61); curve B - classical, Egs. (69)-
{(70) ; curve € - almost classical, Eaq. (74).

Differential cross section for H-He at E= 350 ev,
as calculated from repulsive potentials., Curve A-
quantum, Eq. (61); curve B - classical, Eq. (66);
curve C - almost classical, Eq. (74).

Differential cross section for K-gg at thermal
energies, as calculated for an r~° attractive
potential., The labelling of the curves is
exactly the same as in Fig. 1.
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